Laser Light Scattering Study of the Formation and Structure of Poly(N-isopropylacrylamide-co-acrylic acid) Nanoparticles
نویسندگان
چکیده
Poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-co-AA) ionomer chains can form stable nanoparticles in water at temperatures higher than their lower critical solution-temperature. A combination of the weight average molar mass (Mw) from the absolute average scattering intensity and the hydrodynamic radius distribution (f(Rh)) from the line width distribution G(Γ) was used to study the influence of the AA content and molar mass of the ionomer chains on the formation and structure of these novel surfactant-free nanoparticles. Our results reveal (1) particle size decreases as the AA content increases; (2) the particle formation is not only thermodynamically controlled but also dependent on the formation temperature, the polymer concentration, and the molar mass of the ionomer chains, because it involves simultaneously the process of the intrachain collapse and interchain aggregation; and (3) the hydrodynamic density (〈F〉) of the particle slightly increases as the formation temperature increases but remains to be a constant when the ionomer concentration varies. We also found that the weight average particle mass (Mw,particle) can be scaled with the ionomer concentration (C) as Mw,particle ∝ C2/3, revealing that the aggregation is a diffusion-controlled process.
منابع مشابه
Dual Nano-Carriers using Polylactide-block-Poly(N-isopropylacrylamide-random-acrylic acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications
The stimuli-responsive nanocomposites were designed as drug delivery nanocarriers. Thanks to promising properties such as large surface area and easy chemical functionalization, the graphene derivatives can be used for the drug delivery applications. For this purpose, in the current work, the poly(L,D-lactide)-block-poly(N-isopropylacrylamide-rand-acrylic acid) grafted from reduced graphene oxi...
متن کاملPolymeric composite membranes for temperature and pH-responsive delivery of doxorubicin hydrochloride
Objective(s): Nowadays hydrogels are one of the upcoming classes of polymer-based controlled-release drug delivery systems. Temperature and pH-responsive delivery systems have drawn much attention because some diseases reveal themselves by a change in temperature and/or pH. The objective of this work is to prepare and characterize composite membrane using responsive nanoparticles into a polymer...
متن کاملCharacterization of the core-shell nanoparticles formed as soluble hydrogen-bonding interpolymer complexes at low pH.
The formation of soluble hydrogen-bonding interpolymer complexes between poly(acrylic acid) (PAA) and poly(acrylic acid-co-2-acrylamido-2-methyl-1-propane sulfonic acid)-graft-poly(N,N-dimethylacrylamide) (P(AA-co-AMPSA)-g-PDMAM) at pH=2.0 was studied. A viscometric study showed that in semidilute solution a physical gel is formed due to the interconnection of the anionic P(AA-co-AMPSA) backbon...
متن کاملTemperature- and pH-sensitive core-shell nanoparticles self-assembled from poly(n-isopropylacrylamide-co-acrylic acid-co-cholesteryl acrylate) for intracellular delivery of anticancer drugs.
Temperature- and pH-sensitive amphiphilic polymer poly(N-isopropylacrylamide-co-acrylic acid-co-cholesteryl acrylate) (P(NIPAAm-co-AA-co-CHA)) has been synthesized and employed to encapsulate paclitaxel, a highly hydrophobic anticancer drug, in core-shell nanoparticles fabricated by a membrane dialysis method. The nanoparticles are spherical in shape, and their size can be made below 200 nm by ...
متن کاملUltrasound-Promoted Synthesis and Characterization of Nanoparticles of Coordination Polymer [Co2(pydc)2(H2O)6]n.2nH2O
Nanoparticles of coordination polymer [Co2(pydc)2(H2O)6]n.2n H2O [H2pydc = pyridine-2,5-dicarboxylic acid] have been synthesized by sonochemical method and characterized by elemental analysis, infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, DLS particle size analysis and TGA/DTA. The structure of single crystalline coordination polymer developed from nanosized coo...
متن کامل